Markov processes follow from the principle of maximum caliber.
نویسندگان
چکیده
Markov models are widely used to describe stochastic dynamics. Here, we show that Markov models follow directly from the dynamical principle of maximum caliber (Max Cal). Max Cal is a method of deriving dynamical models based on maximizing the path entropy subject to dynamical constraints. We give three different cases. First, we show that if constraints (or data) are given in the form of singlet statistics (average occupation probabilities), then maximizing the caliber predicts a time-independent process that is modeled by identical, independently distributed random variables. Second, we show that if constraints are given in the form of sequential pairwise statistics, then maximizing the caliber dictates that the kinetic process will be Markovian with a uniform initial distribution. Third, if the initial distribution is known and is not uniform we show that the only process that maximizes the path entropy is still the Markov process. We give an example of how Max Cal can be used to discriminate between different dynamical models given data.
منابع مشابه
An equivalence between a Maximum Caliber analysis of two-state kinetics and the Ising model
Application of the information-theoretic Maximum Caliber principle to the microtrajectories of a two-state system shows that the determination of key dynamical quantities can be mapped onto the evaluation of properties of the 1-D Ising model. The strategy described here is equivalent to an earlier Maximum Caliber formulation of the two-state problem, but reveals a different way of imposing the ...
متن کاملApplication of Markov Processes to the Machine Delays Analysis
Production and non-productive equipment and personnel delays are a critical element of any production system. The frequency and length of delays impact heavily on the production and economic efficiency of these systems. Machining processes in wood industry are particularly vulnerable to productive and non-productive delays. Whereas, traditional manufacturing industries usually operate on homoge...
متن کاملInferring Transition Rates of Networks from Populations in Continuous-Time Markov Processes.
We are interested inferring rate processes on networks. In particular, given a network's topology, the stationary populations on its nodes, and a few global dynamical observables, can we infer all the transition rates between nodes? We draw inferences using the principle of maximum caliber (maximum path entropy). We have previously derived results for discrete-time Markov processes. Here, we tr...
متن کاملPrinciples of maximum entropy andmaximum caliber in statistical physics
The variational principles called maximum entropy (MaxEnt) and maximum caliber (MaxCal) are reviewed. MaxEnt originated in the statistical physics of Boltzmann and Gibbs, as a theoretical tool for predicting the equilibrium states of thermal systems. Later, entropy maximization was also applied to matters of information, signal transmission, and image reconstruction. Recently, since the work of...
متن کاملInferring Microscopic Kinetic Rates from Stationary State Distributions
We present a principled approach for estimating the matrix of microscopic transition probabilities among states of a Markov process, given only its stationary state population distribution and a single average global kinetic observable. We adapt Maximum Caliber, a variational principle in which the path entropy is maximized over the distribution of all possible trajectories, subject to basic ki...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 136 6 شماره
صفحات -
تاریخ انتشار 2012